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Abstract

In this paper, the nonlinear projection and column masking (NPCM) algorithm is proposed to estimate the mixing matrix for blind
source separation. It preserves the samples which are close to the interested direction while suppressing the rest. Compared with the exist-
ing approaches, NPCM works efficiently even if the sources are less sparse (i.e., they are not strictly sparse). Finally, we show that NPCM
provides considerably accurate estimation of the mixing matrix by simulations.
� 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in

China Press. All rights reserved.

Keywords: Sparse component analysis; Blind source separation; Particle swarm optimization

1. Introduction

Blind source separation (BSS), which arises from the
cocktail party problem, has received much attention for
more than two decades, and many results have been
reported [1]. The linear instantaneous mixing model of
BSS is as follows:

xðtÞ ¼ AsðtÞ þNðtÞ; t ¼ 1; 2; � � � ; T ð1Þ

where xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; � � � ; xmðtÞ�T and sðtÞ ¼ ½s1ðtÞ; s2ðtÞ;
� � � ; snðtÞ�T are the observation vector and source vector at
time instant t, respectively. A 2 Rm�n is the mixing matrix.
BSS tries to recover the sources s(t) only from their
mixtures (or equivalently observations) x(t), whereas the
mixing matrix A is unknown.

Independent component analysis (ICA) pioneers the early
study of BSS [2]. Meanwhile, the case of m � n is mainly
studied. ICA-based approaches assume independence of
the sources, and they reconstruct the sources by multiplying
the observations from the left by the inverse of the mixing

matrix A [1,2]. Based on the temporal predictability, Stone
and Xie et al. developed a novel approach [3,4], which only
uses the second-order statistics. However, the above-men-
tioned approaches fail in underdetermined BSS, i.e. m < n.
For the case of underdetermined mixing, sparsity is a widely
used assumption. Sparsity means that only one source is
active or dominant at each time instant t. This problem is
often referred to as the sparse component analysis (SCA),
and some important results can be found in [5–9]. Consider
an equivalent formulation of (1) (noise is neglected):

xðtÞ ¼
Xn

i¼1

aisiðtÞ ð2Þ

where ai is the ith column of A. If only one source, for
example si, is active at time instant t0, then x(t0)=aisi(t0).
That is, the observation vector x(t0) is collinear with ai.
Consequently, the observations can be clustered in lines,
and each cluster center is an estimation of one column of
the mixing matrix A. Due to the inherent scale indetermi-
nacy of BSS, each column of A provides only the direction
information, and thus the norm of each column of A can be
normalized to be unit. In this sense, columns of the mixing
matrix A and directions are simply the same notions.
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The SCA-based BSS approaches are mainly divided into
two categories: one consists of methods that estimate the
mixing matrix and the sources jointly [10], and the other
is the classic two-stage method that estimates the mixing
matrix at first and then reconstructs the sources according
to the estimated mixing matrix [5,8,11]. No matter which
category is concerned, estimating the mixing matrix is sig-
nificant: it is the first step of the methods in the second cat-
egory and it can provide a good initial point of the mixing
matrix, and consequently, it can accelerate the convergence
of the methods in the first category [12]. Currently, k-
means is a mainly used clustering algorithm for SCA [11–
14]. k-Means is simple and easy to implement. However,
it has disadvantages: first, it is sensitive to the initial values,
but the initial values usually have to be generated ran-
domly. Secondly, k-means performs well only if the sources
are strictly sparse or nearly strictly sparse. Unfortunately,
this restriction often cannot be satisfied in practice. Some
authors proposed the potential function-based approaches
to estimate the mixing matrix [5,15]. However, they work
well if only two mixtures are involved. To overcome the
above-mentioned shortcomings, a new approach, named
nonlinear projection and column masking (NPCM), is pro-
posed to estimate the mixing matrix. NPCM is free of the
dimension of the observations and works effectively for less
sparse sources.

The remainder of the paper is organized as follows: in
Section 2, the motivation and the NPCM algorithm are
presented. In Section 3, the particle swarm optimization
(PSO) is introduced to optimize the objective function.
Simulations are presented in Section 4. Finally, conclusions
are made in Section 5.

2. Nonlinear projection and column masking

In this paper, the source signals are assumed to be
sparse. Here, the sparsity means that there are sufficient
time instants at which one and only one source is active
or dominant. In other words, we need sufficient samples
to express each direction (column) rather than require that
the sources are strictly sparse. Generally, many un-sparse

time instants are permitted in our algorithm, i.e., our
approach works well for less sparse sources.

2.1. Motivation

Suppose that the interested direction is w; define
yt ¼ kxtk cosðw; xt

_ Þ
���

���, where w; xt
_

is the angle between w
and xt (thus 0� w; xt

_ � p). Thus, yt is the length of the pro-
jection of the sample xt on the vector w. Classic principle
component analysis (PCA) searches a vector w which max-
imizes the cost function JðwÞ ¼ VarðytÞ ¼ E½y2

t � (assume
that the sources are centered, and E is the math expecta-
tion operator). Fig. 1a shows the scatter plot of two
sparse speech signals. From the figure, we see that the
first principal component cannot indicate columns of
the mixing matrix. But if the samples far away from
the direction a1 are masked, a1 will become the principal
component of the rest of the samples (see Fig. 1b).
Motivated by this, we modify the objective function of
PCA. The new objective function will sufficiently sup-
press the samples which are far away from the interested
direction w.

In order to suppress the samples which are far away
from w, an exponential function f ðmÞ ¼ e�qm2

is employed,
where q > 0 is used to control the decaying speed. To
ensure that f is maximized when xt and w are collinear,
the mapping m ¼ 1� cos2ðw; xt

_ Þ is applied. Note that
cosðw; xt

_ Þ ¼ wT xt
kxtk�kwk. Thus, the following cost function is

defined:

max JðwÞ ¼
X

t

kxtk exp �q 1� wT xtx
T
t w

wT wxT
t xt

� �2
 !

ð3Þ

Fig. 2a is the scatter plot of two linear mixtures of
four speech signals. It is almost impossible to detect
directions from the scatter plot directly. Let
w ¼ ½cos h; sin h�T . Fig. 2b is the plot of J(h) with
q = 105. From Fig. 2b, four directions are indicated by
the four maxima. Thus, the estimation of the mixing
matrix is converted to search all local maxima of the
objective function.

Fig. 1. (a) PCA cannot indicate columns of the mixing matrix. (b) The principal component indicates a column of the mixing matrix when some samples
are masked.
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2.2. Nonlinear projection and column masking

Now suppose that a maximum of model (3) has been
obtained, i.e., the first column w1 has been estimated and
now the next column is to be estimated. Let
h0 ¼ maxi–jj cosðai; aj

_ Þj and assume that h0 can be deter-
mined roughly. If j cosðwl; xt

_ Þj � d0 ¼ cosðh0Þ, xt is useless
for estimating the next column. So, we can mask the sam-
ples near the vector w1. More generally, assuming that the
columns w1;w2; � � �wp have been estimated, we define the
masking vector M:

Mt ¼
0 j cosðwi; xt

_ Þj > d0; i ¼ 1; 2; . . . ; p

1 otherwise

(

ð4Þ

And the new objective function is

max HðwÞ ¼
X

t

Mtkxtk exp �q 1� wT xtx
T
t w

wT wxT
t xt

� �2
 !

ð5Þ
Note that d0 ¼ cosðh0Þ and h0 ¼ maxi–jj cosða; aj

_ Þj. One
may question how to determine the threshold h0 or, equiv-
alently, d0. Generally, it can be prior knowledge of the
environment. If this prior knowledge is unavailable, bene-
fiting from the nonlinear projection, it can also be approx-
imate in our algorithm. Experientially, if the sources are
less sparse or the environment is noisy, a larger value for
d0 is recommended. The algorithm is described as follows:

1. Nonlinear projection and column masking algorithm
(NPCM)

2. Step 1: Initialize w.
3. Step 2: Update M by (4), solve model (5).
4. Repeat step 2, until all columns are estimated.

The optimization of model (5) will be discussed in Sec-
tion 3.

2.3. Parameter selection

Setting the parameter q properly is important to the suc-
cess of the algorithm. To get the value of q, we solve the
following equation roughly:

expð�qð1� cos2 h0Þ2Þ � e ð6Þ

Therefore,

q > � logðeÞ
sin4 h0

: ð7Þ

where e < 1
T is commonly recommended and T is the num-

ber of samples. e < 1
T guarantees that even if there are many

samples x0t which satisfy that j cosðx;w_ Þj > h0, the sumP
tkx0tk expð�qð1� cos2ðx0t;w

_

ÞÞ2Þ will not affect the value
of H(w) or J(w) evidently. So e < 1

T is a rough criterion.
Generally, the parameters in NPCM can be set roughly.

It is usually recommended that q possibly takes a larger
value. However, the objective function is a sum relevant to
discrete samples. If the number of samples is relatively
small but q is too large, the objective function will have a
saw-tooth outline (so a large number of local maxima
exists), which is a nightmare for optimization algorithms.
Generally, if the sources are sufficiently sparse and noise
is mild, a large value should be set for q to achieve a higher
direction resolution. And in contrast, a smaller value is rec-
ommended for q to make the function smoother, which
leads the algorithm to be more robust to noise. For exam-
ple, setting h0 ¼ 5� 	 0:09 radian, T = 65449, according to
(7), we have q = 3.48 � 105.

3. Optimization of the objective function

In the NPCM approach, the global maxima of the
objective function are generally desired, and they corre-
spond to the columns of the mixing matrix. As mentioned
above, if q is too large, many local maxima exist. Conse-
quently, the algorithms depending on the local properties
of the objective function, for example gradient-based algo-
rithms, generally cannot provide desirable results. In fact, it
is still a challenge to develop algorithms in global conver-
gence. Since the global maxima are crucial to NPCM, par-
ticle swarm optimization (PSO) is introduced here.

The PSO, first introduced by Kennedy and Eberhart
[16], is a stochastic optimization technique that can be lik-
ened to the behavior of a flock of birds or the sociological
behavior of a group of people. These population-based liv-
ing beings utilize two kinds of important knowledge when

Fig. 2. (a) Scatter plot of two linear mixtures of four sources in the time domain. (b) Plot of J(h) where h 2 ½0;p�.
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they are moving, hunting for food and so on: one is from
their own personal experience; the other is from the popu-
lation. In optimization, denote a possible solution to the
optimization model at hand by a particle, and let w(i) be
the ith particle; then w(i) is updated by the following rule:

w
ðiÞ
kþ1 ¼ w

ðiÞ
k þ mkþ1

mkþ1 ¼ xkmk þ c1rk;1ðwðiÞl � wkÞ þ c2rk;2ðwg � wkÞ
ð8Þ

where xk is the inertia weight, this value is typically setup
to vary linearly from 1 to 0 during the course of a training
run. w

ðiÞ
l is the best solution found by the particle w(i) so far,

denoting the individual experience. wg is the global best
solution discovered so far by any of the particles in the
swarm, i.e. it denotes the population experience. c1 and c2

denote the acceleration coefficients and are generally 2,
rk;i 
 Uð0; 1Þ. PSO cannot guarantee the global conver-
gence, but it can find a relatively better solution in high
probability, which is enough for our task. Further develop-
ment of PSO can be found in [17–20], and for convenience,
the standard PSO is employed and all the parameters are
set to default values in this paper.

4. Simulations

In simulations, PSO uses the following settings: the size
of the population is 20, and the iteration number is 100.
The accuracy of direction estimation is measured by
Dsimi ¼ j cosðai; eai

_

Þj, where ai; eai denote a column of the
mixing matrix and its estimator, respectively. If Dsimi ¼ 1,
the column is estimated accurately up to a scale.

In the first simulation, the sources named SixFlutes are
used. SixFlutes consist of six sources which are not sparse
in the time domain but sparse in the frequency domain.
Fig. 3a is the scatter plot of two linear mixtures of these
six sources in the transform domain. The ‘sparse’ trans-
form is FFT, and the real coefficients of FFTs are used
to estimate the mixing matrix. The mixing matrix is:

A¼
0:6105 0:9549 �0:8969 �0:6253 0:9975 0:2985

0:7920 �0:2968 �0:4422 0:78040 0:0708 0:9544

� �

According to (7), we set q = 4 � 105 (q is estimated by set-
ting e ¼ 1

T , where T is the number of samples). The plot of J

is shown in Fig. 3b. From Fig. 3b, we see that, because the
sources are very sparse in the transform domain, the six
columns are indicated clearly by the local maxima of J.
Actually, the accuracy of the estimated directions is greater
than 0.9999.

In the following simulation, an example with less spar-
sity is exploited. The sources are four speech signals, and
they are mixed by a 3 � 4 matrix. To investigate the robust-
ness to sparsity of NPCA, no sparse transforms are
applied. Fig. 4a shows the scatter plot of the three observa-
tions. It is almost impossible to detect the directions from
the scatter plot. Fig. 4b shows the landscape plot of the
objective function (q = 104): each peak corresponds to
one source and the peak location corresponds to a column
of the mixing matrix.

After one direction wk is obtained, set Mt = 0 if
j cosðwk; xt

_ Þj < 0:9. Table 1 shows the accuracies obtained
by k-means and NPCM in the estimation of the mixing
matrix. Compared with k-means, NPCM achieves more
accurate estimation of the mixing matrix. What is more,
k-means often estimates only three directions correctly.
In fact, k-means is well known to be extremely sensitive
to initial cluster centers. A bad choice of initial cluster
centers will result in wrong clusters. However, benefiting
from the global search ability of PSO, NPCM almost
always succeeds in estimating all directions and is barely
affected by initial values. In other words, compared with
the k-means, NPCM is more robust to the initial
settings.

5. Conclusion

SCA is a powerful tool to solve the underdetermined
BSS problem. Under the assumption of sparsity, the mix-
ing matrix can be estimated via the linear clustering. How-
ever, the existing approaches often assume that the sources
are strictly sparse. This paper proposed a new algorithm
named NPCM to estimate the mixing matrix for less sparse
sources. NPCM estimates the directions by suppressing the
samples far away from the interested direction. This
method is proved to be robust and efficient.

Global maxima play key roles in the success of our
algorithm, and PSO is employed to optimize the objec-
tive function. Although PSO cannot guarantee global
convergence, it is able to arrive at a relatively better
position, which is enough for our task. In fact, a desired
solution is always achievable when the numbers of the
population and the iteration are large. Simulations show
that NPCM is feasible and is very robust to sparsity. An
algorithm with global convergence will improve the reli-
ability and robustness of the algorithm, but currently,
global optimization is still full of challenges. We look
forward to more efficient tools to deal with this kind
of optimization model.

Fig. 3. (a) Scatter plot of two linear mixtures of six sources in the
transform domain. (b) Plot of J where J(w) = J(h) is defined by (3),
w = [cos h,sin h]T, h 2 ½0; p�.
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Fig. 4. (a) Scatter plot of three linear mixtures of four sources in the time domain. (b) Landscape plot of the objective function. Each peak corresponds to
one source, and the peak locations correspond to the associated source’s mixing parameters.

Table 1
Comparison of estimation accuracy between k-means and NPCM.

Dsimi1 Dsimi2 Dsimi3 Dsimi4

k-Means 0.9222 0.9955 0.9952 0.8579
NPCM 0.9990 0.9999 0.9980 0.9736
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